A kirigami approach to engineering elasticity in nanocomposites through patterned defects.

نویسندگان

  • Terry C Shyu
  • Pablo F Damasceno
  • Paul M Dodd
  • Aaron Lamoureux
  • Lizhi Xu
  • Matthew Shlian
  • Max Shtein
  • Sharon C Glotzer
  • Nicholas A Kotov
چکیده

Efforts to impart elasticity and multifunctionality in nanocomposites focus mainly on integrating polymeric and nanoscale components. Yet owing to the stochastic emergence and distribution of strain-concentrating defects and to the stiffening of nanoscale components at high strains, such composites often possess unpredictable strain-property relationships. Here, by taking inspiration from kirigami—the Japanese art of paper cutting—we show that a network of notches made in rigid nanocomposite and other composite sheets by top-down patterning techniques prevents unpredictable local failure and increases the ultimate strain of the sheets from 4 to 370%. We also show that the sheets' tensile behaviour can be accurately predicted through finite-element modelling. Moreover, in marked contrast to other stretchable conductors, the electrical conductance of the stretchable kirigami sheets is maintained over the entire strain regime, and we demonstrate their use to tune plasma-discharge phenomena. The unique properties of kirigami nanocomposites as plasma electrodes open up a wide range of novel technological solutions for stretchable electronics and optoelectronic devices, among other application possibilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach

In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...

متن کامل

A Kirigami Approach to Forming a Synthetic Buckliball

The shape transformation of some biological systems inspires scientists to create sophisticated structures at the nano- and macro- scales. However, to be useful in engineering, the mechanics of governing such a spontaneous, parallel and large deformation must be well understood. In this study, a kirigami approach is used to fold a bilayer planar sheet featuring a specific pattern into a bucklib...

متن کامل

Role of Graphene Sheet Agglomeration in the Macroscopic Elastic Properties of Metal Matrix Nanocomposites

The purpose of the present work is to analyze the modulus of elasticity of graphene (Gr) sheet-reinforced metal matrix nanocomposites (MMNCs) using a homogenized model based on the Mori-Tanaka micromechanics approach. The main focus is to investigate the effects of Gr sheet agglomeration on the MMNC macroscopic elastic modulus. Also, the role of aligning Gr sheets in the mechanical performance ...

متن کامل

Bending and Free Vibration Analysis of Nonlocal Functionally Graded Nanocomposite Timoshenko Beam Model Rreinforced by SWBNNT Based on Modified Coupled Stress Theory

In this article, the bending and free vibration analysis of functionally graded (FG) nanocomposites Timoshenko beam model reinforced by single-walled boron nitride nanotube (SWBNNT) using micro-mechanical approach embedded in an elastic medium is studied. The modified coupled stress (MCST) and nonlocal elasticity theories are developed to take into account the size-dependent effect. The mechani...

متن کامل

Optimal SQUID based non-destructive test for detecting sub-surface defects with the help of advanced SQUID superconducting sensors and an experimental approach for optimal production method of these sensors from the YBCO superconductor materials

The conventional eddy current method for non-destructive inspection of welding joints has limitations that can examine defects to a certain depth below the surface of the sample and is not suitable for determining deep defects. This limitation can be overcome using the SQUID superconducting sensors. The nonstoichiometric composition of YBCO due to its superconducting temperature and desired cri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 14 8  شماره 

صفحات  -

تاریخ انتشار 2015